
Getting Started

Table of Contents

Running Python Scripts

Running Python Interpreter

Text after

And run this program by calling
the file before doing it.

Open your text editor, type the following text and save it as

character in any line is considered as comment.

Open a new Python interpreter and use it to find the value of

Create a python script to print hello, world! four times.

Create a python script with the following text and see the output.

. Make sure you change to the directory where you saved

Now you can type any valid python expression at the prompt. python reads the typed expression, evaluates it and
prints the result.

Python comes with an interactive interpreter. When you type python in your shell or command prompt, the python
interpreter becomes active with a >>> prompt and waits for your commands.

#

python hello.py

hello.py.

2+3.

42
42

4 + 2

"hello, world!"

"hello, world!"

anand@bodhi ~$ python
hello.py hello, world!
anand@bodhi ~$

$ python
Python 2.7.1 (r271:86832, Mar 17 2011, 07:02:35)
[GCC 4.2.1 (Apple Inc. build 5664)] on darwin
Type "help", "copyright", "credits" or "license" for more information. >>>

>>>

>>
> 6

print

print

Problem 1:

Problem 2:

Problem 3:

This is helloworld program
run this as:
pythonhello.py

16

b

b

1 + 2

x =
4
x

a + b

x =
4
x *
x

x = 4
y = x + 1
x = 2
print x, y

>>> x = 'hello'
>>>x
'hello'

a,b=1,2 a

a,b=1,2
a,b=b,a a

>>> foo
Traceback (most recent call last) :
File "<stdin>", l ine 1 , in ?
NameError: name 'foo' is not defined
foo = 4
foo

It is possible to do multiple assignments at once.

Swapping values of 2 variables in python is very simple.

What will be the output of the following program.

If it doesn’t print anything, what changes can you make to the program to print the value?

In this example x is a variable and it’s value is 4.

If you try to use a name that is not associated with any value, python gives an error message.

If you re-assign a different value to an existing variable, the new value overwrites the old value.

One of the building blocks of programming is associating a name to a value. This is called assignment. The
associated name is usually called a variable.

When executing assignments, python evaluates the right hand side first and then assigns those values to the
vari- ables specified in the left hand side.

Problem 4: What will be output of the following program.

Assignments

>>
>
>>
>

>>
>
>>
> 4

>>
>
>>
> 4

>>
>
>>
> 1>>
> 2
>>
> 3

>>
>
>>
>
>>
> 2
>>
> 1

Problem 5:

42

14

49

42

4 + 2

7 + 2

7 - 2

7 *

2

7 /

2

7**2

7%2

>>> 4.2
4.2
>>> 4.2 + 2.3
6.5

>>> 7.0 / 2.0
3.5
>>> 7.0 / 2
3.5
>>> 7 / 2.0
3.5

x,y=2,6
x,y=y,x+2
print x, y

a,b=2,3
c,b=a,c+1
print a, b, c

>>>

>>
> 6

>>
> 9
>>
> 5
>>>

>>
> 3
>>>

>>
> 1

Problem 6:

Python also supports decimal numbers.

We already know how to work with numbers.

Python supports the following operators on numbers.

• +addition

• -subtraction

• *multiplication
• /division

• **exponent
• %remainder
Let’s try them on integers.

What will be the output of the following program.

If you notice, the result 7 / 2 is 3 not 3.5. It is because the / operator when working on integers, produces only
an integer. Lets see what happens when we try it with decimal numbers:

Numbers

All the operators
except right.

The operators can be combined.

We can use parenthesis to specify the explicit groups.

Strings what you use to represent text.

Strings are a sequence of characters, enclosed in single quotes or double quotes.

There is difference between single quotes and double quotes, they can used

interchangebly. Multi-line strings can be written using three single quotes or three double

quotes.

are left-associcate, that means that the application of the operators starts from left to

It is important to understand how these compound expressions are evaluated. The operators have precedence,
a kind of priority that determines which operator is applied first. Among the numerical operators, the precedence
of operators is as follows, from low precedence to high.

•+,-

•*,/,%
•**

Whenwecompute2 + 3 * 4,3 * 4iscomputedfirstastheprecedenceof*ishigherthan+andthenthe
result is added to 2.

>>>

>>>

>>>

>>>

11

10

14

20

15

2 + 3 * 4

2 * 3 + 4

(2+3)*4

>>> x = "hello"
>>> y = 'world'
>>> print x, y
hello world

20

7 + 2 + 5 - 3

+
5
↓

1 + 2 + 3 * 4 + 5
↓

3 + 3 * 4 + 5
↓

3+12+5
↓

x = """This is a multi-l ine string
written in
three lines."""
print x

y = ' ' 'multi-l ine strings can be written
using three single quote characters as well .
The string can contain 'single quotes' or "double quotes"
in side it . ' ' '
print y

**

Strings

Functions

Existing functions can be used in creating new functions.

It is important to understand, the scope of the variables used in functions.

Lets look at an example.

Functions are just like other values, they can assigned, passed as arguments to other functions etc.

Variables assigned in a function, including the arguments are called the local variables to the function.
variables defined in the top-level are called global variables.

Changing the values of x and y inside the function incr won’t effect the values of global x and y.

But, we can use the values of the global variables.

The

Just like a value can be associated with a name, a piece of logic can also be associated with a name by defining a
function.

The body of the function is indented. Indentation is the Python’s way of grouping statements.

The ... is the secondary prompt, which the Python interpreter uses to denote that it is expecting some more
input.
The functions can be used in any expressions.

>>>

>>>

>>
>
>>
>

>>> def
. . . return . . .
>>>
square(5)

>>> def
. . . return . . .
>>>

>>> def
. . . return . . .
>>>

25

13

13

81

13

16

x = 0
y = 0
def incr(x):

y = x + 1
return y
incr(5)
print x , y

f = square
f(4)

square(x):
x * x

pi = 3.14
def area(r) :

return pi * r * r

square(square(3))

fxy(square, 2, 3)

sum_of_squares(2, 3)

square(2) + square(3)

fxy(f , x, y) :
f(x) + f(y)

sum_of_squares(x, y) :
square(x) + square(y)

Functions can be called with keyword arguments.

What will be the output of the following program?

What will be the output of the following program?

What will be the output of the following program?

What will be the output of the following program?

When Python sees use of a variable not defined locally, it tries to find a global variable with that name.

However, you have to explicitly declare a variable as global to modify it.

How many multiplications are performed when each of the following lines of code is executed?

x = 1
f() :

x = 1
def f() :

x = 2

x
f()
x

x

x

x = 2
def f(a) :

x = a * a
return x
y = f(3)
print x, y

x = 1
def f() :

y = x
x = 2

square(5)
square(2*5)

x + y

difference(5, 2)

difference(5, y=2)

difference(x=5, y=2)

difference(y=2, x=5)

difference(x, y) :
x-y

numcalls = 0
def square(x):
global numcalls

numcalls = numcalls + 1
return x * x

>>>
3
>>>
3
>>>
3

print
print

print
print
print

def
return

print x
print f()

return
print x
print f()
print x

>>> def
... return ...
>>>
3

return

Problem 7:

Problem 8:

Problem 9:

Problem 10:

Problem 11:

Methods

Built-in Functions

The built-in function

The built-in function
objects to strings.

Write a function

And some arguments can have default values.

Python provides some useful built-in functions.

There is another way of creating functions, using the

computes length of a string.

Methods are special kind of functions that work on an object.

For example, upper is a method available on string objects.

operator.

converts string to ingeter and built-in function

to find number of digits in the given number.

Notice that unlike function defination, lambda doesn’t need a return. The body of the lambda is a single expression.

The lambda operator becomes handy when writing small functions to be passed as arguments etc. We’ll see
more of it as we get into solving more serious problems.

converts integers and other type of

>>>

>>>

>>
>
>>
>>>>

>>>
2
>>>
4

>>>

>>>

>>>
1
>>>
5

>>>
>>> print

>>> def
. . . return . . .
>>>

lambda

11

15

12

35

10

50

35

HELLO

fxy(

>>> str(123)
"123"

min(2, 3)

max(3, 4)

int("50")

increment(10)

x = "hello"
x.upper()

count_digits(5)

increment(10, 5)

len("helloworld")

count_digits(12345)

cube = lambda x: x ** 3
fxy(cube, 2, 3)

increment(10, amount=2)

x: x ** 3, 2, 3)

increment(x, amount=1):
x + amount

len

int

count_digits

lambda

str

Problem 12:

Write a function

Here is the list of available conditional operators.

• ==equalto

• !=notequalto

• <lessthan

• >greaterthan

• <= less than or equal to

• >= greater than or equal to

It is even possible to combine these operators.

There are few logical operators to combine boolean values.

• a and bisTrueonlyifbothaandbareTrue.

• a or bisTrueifeitheraorbisTrue.

• not a is True only if a is False.

to compare two strings, ignoring the case.

The conditional operators work even on strings - the ordering being the lexical order.

Python provides various operators for comparing values. The result of a comparison is a boolean value, either
True or False.

As already mentioned, methods are also functions. They can be assigned to other variables can be called separately.

>>>
>>> print

and

and

and

HELLO

>>>2<3
False
>>>2>3
True

>>> True
True
>>> True
False
>>>2<3

f = x.upper
f()

True

False

5 < 4

>>>x=5
>>>2<x<10
True
>>>2<3<4<5<6 True

>>> "python" > "perl"
True
>>> "python" > "java"
True

>>> istrcmp('python', 'Python')
True
>>> istrcmp('LaTeX', 'Latex') True
>>> istrcmp('a', 'b')
False

Problem 13: istrcmp

Conditional Expressions

The if statement

od
d
>>
>

eve
n
>>>

eve
n
>>>

False
>>>2<3
True

x = 4
y = 5
p = x < y
print p

2 <
3
2 <
3
2 <
3
2 <
3

5 < 4

x < z

x=42
x%2==0:

'odd'

x%2==0:
print 'even'

x = 3
x%2==0:

'even'

3 > 1
3 > 1
3 > 1

3 > 1

True, False = False, True
print True, False
print 2 < 3

'even'

'one digit number'
x < 100:
'two digit number'

print
print
print
print

>>>
>>> if

>>> if
. . .
. . .

or

or

>>>
>>> if
. . . print . . .
else :
. . . print . . .

>>> x = 42
>>> if x < 10:
. . . print . . . elif
. . . print
.. . else :

and
or
or not
and not

print

Problem 14:

Problem 15:

Problem 16:

The

The statement can have optional

What will be output of the following program?

What will be output of the following program?

What will be output of the following program?

statement is used to execute a piece of code only when a boolean expression is true.

clause, which is executed when the boolean expression is

The if statement can have optional elif clauses when there are more conditions to be checked. The keyword
is short for else if, and is useful to avoid excessive indentation.

Inthisexample,print ’even’isexecutedonlywhenx % 2 == 0isTrue.

The code associated with if can be written as a separate indented block of code, which is often the case when
there is more than one statement to be executed.

if

if else False.

elif

. . .

. . .

>>>

>>>

>>>

>>
>
>>
>
3

>>
>
>>
>
2
>>
>
>>
>
4

print
else :

print

print
else

print

:
x +

x = 2
if x == 2:

x

y

x = 2
if x == 2:

x

x[1] = 4
x[1]

two digit
number >>>

x = [1, 2, 3]

x = [1, 2, 3]
len(x)

x = [1, 2, 3]
x[1]

'big number'

x = ["hello", "world"]

x = [1, 2, "hello", "world", ["another", "list"]]

Problem 17:

Problem 18:

The

The built-in function

And here is a list of strings.

The first element is indexed with 0, second with 1

We’ll learn more about lists in the next chapter.

works for lists as well.

and so on.

operator is used to access individual elements of a list.

Modules are libraries in Python. Python ships with many standard library modules. A

module can be imported using the import statement.

Lets look at time module for example:

List can be heterogeneous. Here is a list containings integers, strings and another list.

What happens the following code is executed? Will it give any error? Explain the reasons.

What happens when the following code is executed? Will it give any error? Explain the reasons.

Lists are one of the great datastructures in Python. We are going to learn a little bit about lists now. Basic
knowledge of lists is requrired to be able to solve some problems that we want to solve in this chapter.

Here is a list of numbers.

Lists

Modules

[]

len

import
sys print

>>> import
time >>>

sys.argv[1]

>>> a = [1, 2]
>>> b = [1.5, 2, a]
>>>b
[1.5, 2, [1, 2]]

>>> range(4)
[0, 1, 2, 3]
>>> range(3, 6)
[3, 4, 5]
>>> range(2, 10, 3)
[2, 5, 8]

$ python add.py 3 5
8
$ python add.py 2 9
11

>>> [1, 2, 3, 4]
[1, 2, 3, 4]
>>> ["hello", "world"]
["hello", "world"]
>>> [0, 1.5, "hello"] [0,
1.5, "hello"]
>>> [0, 1.5, "hello"] [0,
1.5, "hello"]

time.asctime()
'Tue Sep 11 21:42:06 2012'

$ python echo.py hello
hello
$ python echo.py hello world
hello

Lets try running it.

The built-in function

A List can contain another list as member.

can be used to create a list of integers.

We’ve already seen quick introduction to lists in the previous chapter.

There are many more interesting modules in the standard library. We’ll learn more about them in the coming
chapters.

Problem 19: Write a program add.py that takes 2 numbers as command line arguments and prints its sum.

The asctime function from the time module returns the current time of the system as a string.

The sys module provides access to the list of arguments passed to the program, among the other things.

The sys.argv variable contains the list of arguments passed to the program. As a convention, the first element
of that list is the name of the program.
Lets look at the following program echo.py that prints the first argument passed to it.

range

Working with Data

Lists

The and

The built-in function

operators work even on lists.

We can use list slicing to get part of a list.

When a wrong index is used, python gives an error.

Negative indices can be used to index the list from right.

can be used to find the length of a list.

An optional third index can be used to specify the increment, which defaults to 1.

List can be indexed to get individual entries. Value of index can go from 0 to (length of list - 1).

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the
size of the list being sliced.

Even negative indices can be used in slicing. For example, the following examples strips the last element from the
list.

+ *

len

>>
>
>>
>
4

>>
>
>>
>
1
>>>
2

>>
>
>>
>
4
>>>
3

x[1]

x [-2]

>>> x[0:-1]
[1, 2, 3]

x = [1, 2]
x[0]

>>> a = [1, 2, 3]
>>> b = [4, 5]
>>>a+b
[1, 2, 3, 4, 5]
>>>b*3
[4, 5, 4, 5, 4, 5]

a = [1, 2, 3, 4]
len(a)

x = [1, 2, 3, 4]
x[-1]

>>> x = [1, 2, 3, 4] >>>
x[0:2]
[1, 2]
>>> x[1:4]
[2, 3, 4]

>>> x = [1, 2, 3, 4] >>>
a[:2]
[1, 2]
>>> a[2:]
[3, 4]
>>> a[:]
[1, 2, 3, 4]

>>> x = [1, 2, 3, 4]
>>> x[6]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: list index out of range

The for Statement

for x in
print

for i in
print

>>> a = [1, 2]
>>> a.append(3)
>>>a
[1, 2, 3]

x = [0, 1, [2]]
x[2][0] = 3
print x
x[2].append(4)
print x
x[2] = 2
print x

>>> x = [1, 2, 3, 4] >>>
x[1] = 5
>>>x
[1, 5, 3, 4]

>>> x = [1, 2, 3, 4]
>>> 2 in x
True
>>> 10 in x
False

range(10):
i , i*i , i*i*i

[1, 2, 3, 4]:
x

>>> x = range(10)
>>>x
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] >>>
x[0:6:2]
[0, 2, 4]

>>> x[: :-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

>>> zip(["a", "b", "c"], [1, 2, 3]) [('a', 1),
('b', 2), ('c' , 3)]

The built-in function

Presence of a key in a list can be tested using

List members can be modified by assignment.

We can reverse a list, just by providing -1 for increment.

Python provides for statement to iterate over a list. A
every element in a list.

operator.

It is handy when we want to iterate over two lists together.

What will be the output of the following program?

takes two lists and returns list of pairs.

Values can be appended to a list by calling append method on list. A method is just like a function, but it is
associated with an object and can access that object when it is called. We will learn more about methods when we
study classes.

statement executes the specified block of code for

zip

in

for

Problem 20:

24
factorial(4)

sum([1, 2, 3]) 6

product([1, 2, 3])

>>> sum(["hello", "world"])
"helloworld"
>>> sum(["aa", "bb", "cc"])
"aabbcc"

>>> unique([1, 2, 1, 3, 2, 5]) [1, 2,
3, 5]

>>> cumulative_sum([1, 2, 3, 4])
[1, 3, 6, 10]
>>> cumulative_sum([4, 3, 2, 1])
[4, 7, 9, 10]

>>> reverse([1, 2, 3, 4])
[4, 3, 2, 1]
>>> reverse(reverse([1, 2, 3, 4])) [1, 2,
3, 4]

>>> cumulative_product([1, 2, 3, 4]) [1,
2, 6, 24]
>>> cumulative_product([4, 3, 2, 1])
[4, 12, 24, 24]

names = ["a", "b", "c"]
values = [1, 2, 3]
for name, value in zip(names, values):
print name, value

>>
>
>>
>

>>>
6

>>>

Problem 23:

Problem 25:

Problem 28:

Problem 29:

Problem 30:

Problem 21:
.for

function
strings?

Write a function

Write a function

Write a function

Write a function

Implement a function

Python has a built-in function

Problem 22: What happens when the above
function work for a list of strings as well.

to find all duplicates in the list.

to find all the unique elements of a list.

, to compute product of a list of numbers.

Problem 24: Write a function factorial to compute factorial of a number. Can you use the
defined in the previous example to compute factorial?

to reverse a list. Can you do this without using list slicing?

function is called with a list of strings? Can you make your

to compute cumulative product of a list of numbers.

to find sum of all elements of a list. Provide an implementation

function

Problem 26: Python has built-in functions min and max to compute minimum and maximum of a given list. Provide
an implementation for these functions. What happens when you call your min and max functions with a list of
strings?

Problem 27: Cumulative sum of a list [a, b, c, ...] is defined as [a, a+b, a+b+c, ...]. Write a
cumulative_sum to compute cumulative sum of a list. Does your implementation work for a list of

sum

reverse

product

sum

sum

cumulative_product

product

sum

dups

unique

Sorting Lists

lambda

>>> a = [4, 3, 5, 9, 2] >>>
sorted(a)
[2, 3, 4, 5, 9]
>>>a
[4, 3, 5, 9, 2]

>>> a = [2, 10, 4, 3, 7] >>>
a.sort()
>>>a
[2, 3, 4, 7 10]

>>> dups([1, 2, 1, 3, 2, 5]) [1, 2]

>>> a = [[2, 3], [4, 6], [6, 1]] >>>
a.sort(key=lambda x: x[1])
>>>a
[[6, 1], [2, 3], [4 6]]

>>> a = ["hello", 1, "world", 45, 2] >>>
a.sort()
>>>a
[1, 2, 45, 'hello', 'world']
>>> a = [[2, 3], [1, 6]]
>>> a.sort()
>>>a
[[1, 6], [2, 3]]

>>> group([1, 2, 3, 4, 5, 6, 7, 8, 9], 3) [[1, 2, 3],
[4, 5, 6], [7, 8, 9]]
>>> group([1, 2, 3, 4, 5, 6, 7, 8, 9], 4) [[1, 2, 3,
4], [5, 6, 7, 8], [9]]

>>> unique(["python", "java", "Python", "Java"], key=
["python", "java"]

>>> lensort(['python', 'perl' , ' java', 'c' , 'haskell' , 'ruby']) ['c' , 'perl' ,
' java', 'ruby', 'python', 'haskell']

s: s.lower())

Problem 31:

The

The built-in function

Write a function

method sorts a list in place.

We can optionally specify a function as sort key.

This sorts all the elements of the list based on the value of second element of each entry.

Problem 32: Write a function lensort to sort a list of strings based on length.

returns a new sorted list without modifying the source list.

Problem 33: Improve the unique function written in previous problems to take an optional
ment and use the return value of the key function to check for uniqueness.

that take a list and splits into smaller lists of given size.

The behavior of sort method and sorted function is exactly same except that sorted returns a new list instead of
modifying the given list.

The sort method works even when the list has different types of objects and even lists.

function as argu-

group(list, size)

key

sort

sorted

Sets

Tuples

The built-in function

Reimplement the

Tuple is a sequence type just like
commas.

The enclosing braces are optional.

New elements can be added to a set using the

Python 2.7 introduced a new way of writing sets.

Sets are unordered collection of unique elements.

and slicing works on tuples too.

method.

Just like lists, the existance of an element can be checked using the
in sets compared to lists.

function implemented in the earlier examples using sets.

, but it is immutable. A tuple consists of a number of values separated by

operator. However, this operation is faster

Since parenthesis are also used for grouping, tuples with a single value are represented with an additional comma.

len

list

add

in

>>
>
>>
>
1

>>
>
>>
>
1

>>>
3
>>> a[1:]
2,3

len(a)

>>> a = (1)
>>a
1
>>> b = (1,)
>>>b
(1,)
>>> b[0]
1

a=1,2,3 a[0]

a = (1, 2, 3)
a[0]

>>> x = {3, 1, 2, 1}
set([1, 2, 3])

>>> x = set([1, 2, 3])
>>> x.add(4)
>>>x
set([1, 2, 3, 4])

>>> x = set([1, 2, 3])
>>> 1 in x
True
>>> 5 in x
False

>>> x = set([3, 1, 2, 1])
set([1, 2, 3])

Problem 34: unique

Strings

The

The method joins a list of strings.

There are many useful methods on strings.

The split method splits a string using a delimiter.
delimiter.

Indexing and slicing on strings behave similar to that of lists.

operator can be used to check if a string is present in another string.

Strings also behave like lists in many ways. Length of a string can be found using built-in function

The strip method returns a copy of the given string with leading and trailing whitespace removed. Optionally a
string can be passed as argument to remove characters from that string instead of whitespace.

If no delimiter is specified, it uses any whitespace char as

Python supports formatting values into strings. Although this can include very complicated expressions, the most
basic usage is to insert values into a string with the %s placeholder.

in

join

len.

>>>

>>
>
>>
>

in

in

in

11

>>> 'hell '
True
>>> ' full '
False
>>> 'el'
True

a = 'hello'
b = 'python'

'hello'

>>> a = "helloworld"
>>> a[1]
'e'
>>> a[-2]
'l '
>>> a[1:5]
"ello"
>>> a[:5]
"hello"
>>> a[5:]
"world"
>>> a[-2:]
' ld'
>>> a[:-2]
'hellowor'
>>> a[::-1]
'dlrowolleh'

'hello'

'hello'

len("abrakadabra")

>>> "hello world".split()
['hello', 'world']
>>> "a,b,c".split(' , ') ['a', 'b',
'c']

>>> ' hello world\n ' .strip()
'hello world'
>>> 'abcdefgh'.strip('abdh')
'cdefg'

>>> " ". join(['hello', 'world']) 'hello
world'
>>> ' , ' . join(['a', 'b', 'c'])

Example: Word Count

>>
>
>>
>
>>
>

>>
>
>>
>
>>
>

>>
>
>>
>
>>
>

\n \n

' '

f = open('foo.txt', 'r ') f =
open('foo.txt', 'w') f =
open('foo.txt', 'a')

f.open('foo.txt', 'a')
f.write('d\n ')
f .close()

f = open('foo.txt')
f.writelines(['a\n ' , 'b
f.close()

f = open('foo.txt', 'w')
f.write('a\nb\nc')
f.close()

', 'c

>>> open('foo.txt').read()
'f irst l ine\nsecond line\nlast l ine\n'

'])

>>> "%s %s" % (a, b)
'hello python'
>>> 'Chapter %d: %s' % (2, 'Data Structures')
'Chapter 2: Data Structures'

>>> open('foo.txt').readlines()
['f irst l ine\n', 'second line\n', ' last l ine\n'] >>> f =
open('foo.txt')
>>> f .readline()
'f irst l ine\n'
>>> f .readline()
'second line\n'
>>> f .readline()
'last l ine\n'
>>> f .readline()

>>> extsort(['a.c', 'a.py', 'b.py', 'bar.txt', 'foo.txt', 'x.c']) ['a.c', 'x.c',
'a.py', 'b.py', 'bar.txt', 'foo.txt']

open a file in read mode
open a file in write mode
open a file in append mode

Problem 35:

The

The

Write a function

Python provides a built-in function

Contents of a file can be read line-wise using readline and
returns empty string when there is nothing more to read in a file.

Lets try to compute the number of characters, words and lines in a file.

to sort a list of files based on extension.

method is used to write data to a file opened in write or append mode.

to open a file, which returns a file object.

The second argument to open is optional, which defaults to ’r’ when not specified.

Unix does not distinguish binary files from text files but windows does. On windows
be used to open a binary file in read, write and append mode respectively.
Easiest way to read contents of a file is by using the read method.

method is convenient to use when the data is available as a list of lines.

methods. The

should

method

write

writelines

extsort

open

readlines readline

’rb’, ’wb’, ’ab’

Working With Files

than

Write a program

Write a program

Number of lines in a file can be found from method.

Number of characters in a file is same as the length of its contents.

Number of words in a file can be found by splitting the contents of the file.

to print lines of a file in reverse order.

Problem 41: The above wrap program is not so nice because it is breaking the line at middle of any word. Can you
write a new program wordwrap.py that works like wrap.py, but breaks the line only at the word boundaries?

Problem 37: Write a program to print each line of a file in reverse order.

Problem 38: Implement unix commands head and tail. The head and tail commands take a file as argu-
ment and prints its first and last 10 lines of the file respectively.
Problem 39: Implement unix command grep. The grep command takes a string and a file as arguments and
prints all lines in the file which contain the specified string.

that takes filename and width as aruguments and wraps the lines longer

def
return

def
return

def
return

$ python wrap.py she.txt 30
I'm sure that the shells are s
eashore shells.
So if she sells seashells on t he
seashore,
The shells that she sells are
seashells I'm sure.
She sells seashells on the sea
shore;

$ python wordwrap.py she.txt 30
I'm sure that the shells are
seashore shells.
So if she sells seashells on
the seashore,
The shells that she sells are
seashells I'm sure.
She sells seashells on the
seashore;

charcount(filename):
len(open(filename).read())

l inecount(filename):
len(open(filename).readlines())

wordcount(filename):
len(open(filename).read().split())

$ cat she.txt
She sells seashells on the seashore;
The shells that she sells are seashells I'm sure. So if
she sells seashells on the seashore,
I'm sure that the shells are seashore shells.

$ python reverse.py she.txt
I'm sure that the shells are seashore shells.
So if she sells seashells on the seashore,
The shells that she sells are seashells I'm sure. She
sells seashells on the seashore;

$ python grep.py she.txt sure
The shells that she sells are seashells I'm sure. I'm
sure that the shells are seashore shells.

reverse.py

readlines

Problem 36:

Problem 40:
. width

wrap.py

Problem 42:

Problem 43:

we can use multiple

Write a program

It is also possible to filter a list using

Provide an implementation for

clauses in single list comprehension.

It is possible to iterate over multiple lists using the built-in function

inside a list comprehension.

The following example finds all Pythagorean triplets using numbers below 25.
pythagoreantripletifx*x + y*y == z*z.

function using list comprehensions.

to center align all lines in the given file.

is a called

List Comprehensions provide a concise way of creating lists. Many times a complex task can be modelled in a
single line.

Here are some simple examples for transforming a list.

center_align.py

>>> a = range(10)
>>> [x for x in a
[0, 2, 4, 6, 8]
>>> [x*x for x in a
[0, 4, 8, 36, 64]

x%2==0]

x%2 == 0]

>>> [(x, y) for x in range(5)
[(2, 0), (3, 1), (4, 0), (4, 2)]

>>> a = [1, 2, 3, 4]
>>> b = [2, 3, 5, 7]
>>> zip(a, b)
[(1, 2), (2, 3), (3, 5), (4, 7)]
>>> [x+y for x, y in zip(a, b)]
[3, 5, 8, 11]

y

>>> zip([1, 2, 3], ["a", "b", "c"]) [(1,
"a"), (2, "b"), (3, "c")]

>>> a = range(10)
>>>a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [x for x in a]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [x*x for x in a]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> [x+1 for x in a]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

range(x)

$ python center_align.py she.txt
I'm sure that the shells are seashore shells.

So if she sells seashells on the seashore,
The shells that she sells are seashells I'm sure.
She sells seashells on the seashore;

(x+y)%2 == 0]

>>> [(x, y) for x in range(5) for y in range(5) if (x+y)%2 == 0
[(0, 2), (0, 4), (1, 3), (2, 0), (2, 4), (3, 1), (4, 0), (4, 2)]

x != y]

>>> n = 25
>>> [(x, y, z) for x in range(1, n) for y in range(x, n) for z in range(y, n) [(3, 4, 5), (5,
12, 13), (6, 8, 10), (8, 15, 17), (9, 12, 15), (12, 16, 20)]

x*x + y*y == z*z]

>>> [(x, y) for x in range(5) for y in range(5) if (x+y)%2 == 0]
[(0, 0), (0, 2), (0, 4), (1, 1), (1, 3), (2, 0), (2, 2), (2, 4), (3, 1), (3, 3), (4, 0), (4, 2), (

List Comprehensions

if

if

for in if

and

if

for

if

zip

zip.

(x, y, z)

Problem 49:

Problem 50:

Problem 45:

Problem 47:

Write a python function

Write a function
for each item in the list.

Problem 44: Python provides a built-in function
implementation for map using list comprehensions.

Python provides a built-in function
returns true. Provide an implementation for

that takes a list and returns a list of

to parse csv (comma separated values) files.

that returns items of the list
using list comprehensions.

Generalize the above implementation of csv parser to support any delimiter and comments.

tuples containing

for which

that applies a function to each element of a list. Provide an

Problem 46: Write a function triplets that takes a number n as argument and returns a list of triplets such that sum
of first two elements of the triplet equals the third element using numbers below n. Please note that (a, b, c)and(b,
a, c)representsametriplet.

Problem 48: Write a function array to create an 2-dimensional array. The function should take both dimensions as
arguments. Value of each element can be initialized to None:

f(item)

(index,item)
enumerate

parse_csv

map

filter(f, a)
fi lter

a

>>>
def . . .
>>>

>>>
def . . .
>>>

return

return

0
a
1
b
2
c

even(x):

square(x):

map(square, range(5))
[0, 1, 4, 9, 16]

filter(even, range(10))
[0, 2, 4, 6, 8]

x * x

x%2==0

>>> a = array(2, 3)
>>>a
[[None, None, None], [None, None, None]]
>>> a[0][0] = 5
[[5, None, None], [None, None, None]]

>>> triplets(5)
[(1, 1, 2), (1, 2, 3), (1, 3, 4), (2, 2, 4)]

>>> enumerate(["a", "b", "c"])
[(0, "a"), (1, "b"), (2, "c")]
>>> for index, value in enumerate(["a", "b", "c"]): ...
print index,value

>>> print open('a.csv').read()
a,b,c
1,2,3
2,3,4
3,4,5
>>> parse_csv('a.csv')
[['a', 'b', 'c'], ['1', '2', '3'], ['2', '3', '4'], ['3', '4', '5']]

>>> print open('a.txt').read()
elements are separated by ! and comment indicator is
a!b!c
1!2!3
2!3!4
3!4!5
>>> parse('a.txt', ' ! ' , '#')
[['a', 'b', 'c'], ['1', '2', '3'], ['2', '3', '4'], ['3', '4', '5']]

Problem 52:
b

The

The

method returns all keys in a dictionary, the
method returns all key-value pairs in a dictionary.

statement can be used to iterate over a dictionary.

keyword can be used to delete an item from a dictionary.

Write a function nearly_equal to test whether two strings are nearly equal. Two strings
are nearly equal when a can be generated by a single mutation on b.

and

method returns all values in a dictionary and

Problem 51: Write a function mutate to compute all words generated by a single mutation on a given word. A
mutation is defined as inserting a character, deleting a character, replacing a character, or swapping 2 consecutive
characters in a string. For simplicity consider only letters from a to z.

Dictionaries are like lists, but they can be indexed with non integer keys also. Unlike lists, dictionaries are not
ordered.

del

for

The
keys
items

values

a

>>
>
>>
>
1
>>>
3

>>> for
.. .
x

in print

a['z']

key a:

>>> words = mutate('hello')
>>> 'helo' in words
True
>>> 'cello' in words
True
>>> 'helol' in words
True

key

>>> b = {}
>>> b['x'] = 2
>>> b[2] = 'foo'
>>> b[(1, 2)] = 3
>>>b
{(1, 2): 3, 'x': 2, 2: 'foo'}

>>> a.keys()
['x', 'y', 'z']
>>> a.values()
[1, 2, 3]
>>> a.items()
[('x', 1), ('y', 2), ('z', 3)]

a = {'x': 1, 'y': 2, 'z': 3} a['x']

>>> a = {'x': 1, 'y': 2, 'z': 3}
>>> del a['x ']
>>>a
{'y': 2, 'z': 3}

>>> nearly_equal('python', 'perl') False
>>> nearly_equal('perl', 'pearl') True
>>> nearly_equal('python', ' jython')
True
>>> nearly_equal('man', 'woman') False

Dictionaries

Example: Word Frequency

y
z

x
1
y
2
z
3

d.get('p', 5)

>>> 'x ' in a
True
>>> 'p ' in a
False
>>> a.has_key('x')
True
>>> a.has_key('p')
False

key, value

d.setdefault('x', 0)

>>>d
{'x': 1, 'y': 2, 'z': 3}
d.setdefault('p', 0)

word_frequency(words):

a.items():

d = {'x': 1, 'y': 2, 'z': 3}
d.get('x', 5)

>>>d
{'y': 2, 'x': 1, 'z': 3, 'p': 0}

frequency = {}
for w in words:

frequency[w] = frequency.get(w, 0) + 1
return frequency

key, value

>>> 'hello %(name)s' % {'name': 'python'}
'hello python'
>>> 'Chapter %(index)d: %(name)s' % {' index': 2, 'name': 'Data Structures'}
'Chapter 2: Data Structures'

>>
>
>>
>
1
>>>
5
>>>
1

>>>
0

def

>>> for
.. .

in print

Getting words from a file is very trivial.

Other useful methods on dictionaries are and

Presence of a key in a dictionary can be tested using operator or

Dictionaries can be used in string formatting to specify named parameters.

method.

Suppose we want to find number of occurrences of each word in a file. Dictionary can be used to store the number
of occurrences for each word.

Lets first write a function to count frequency of words, given a list of words.

get

in

setdefault.

has_key

>>> word_frequency(['a ' , 'b' , 'a '])
{ 'a ' : 2 , 'b' : 1 }
"""

"""Returns frequency of each word given a l ist of words.

Understanding Python Execution Environment

if

def

>>>
def . . .
>>>

def
return

import sys

print

f(1, 2)
{'a': 1, 'b': 2}

f(a, b):

main(sys.argv[1])

__name__ == "__main__":

locals()

>>> valuesort({'x': 1, 'y': 2, 'a': 3}) [3, 1, 2]

>>> invertdict({'x': 1, 'y': 2, 'z': 3}) {1: 'x', 2:
'y', 3: 'z'}

read_words(filename):
open(filename).read().split()

main(filename):
frequency = word_frequency(read_words(filename))
for word, count in frequency.items():
print word, count

>>> anagrams(['eat', 'ate', 'done', 'tea', 'soup', 'node']) [['eat',
'ate', 'tea], ['done', 'node'], ['soup']]

>>> globals()
{'__builtins__': <module '__builtin__' (built-in)>, '__name__': '__main__', '__doc__': None}
>>>x=1
>>> globals()
{'__builtins__': <module '__builtin__' (built-in)>, '__name__': '__main__', '__doc__': None, 'x':
>>>x=2
>>> globals()
{'__builtins__': <module '__builtin__' (built-in)>, '__name__': '__main__', '__doc__': None, 'x': >>> globals()
['x'] = 3
>>>x
3

Just like

One more example:

Write a function

Problem 57: Write a function
assume that all values are unique.

python also provides a function

Python stores the variables we use as a dictionary. The
the current environment.

We can combine these two functions to find frequency of all words in a file.

to sort values of a dictionary based on the key.

to interchange keys and values in a dictionary.

which gives all the local variables in a function.

function returns all the globals variables in

Problem 53: Improve the above program to print the words in the descending order of the number of occurrences.

Problem 54: Write a program to count frequency of characters in a given file. Can you use character frequency
to tell whether the given file is a Python program file, C program file or a text file?
Problem 55: Write a program to find anagrams in a given list of words. Two words are called anagrams if one
word can be formed by rearranging letters of another. For example ‘eat’, ‘ate’ and ‘tea’ are anagrams.

For simplicity,

Problem 56:

globals

valuesort

invertdict

locals

globals()

def
return

>>> def
. . . return . . .
>>>

>>> import
time >>> print

f("Guido")
Hello Guido!

square(x):
x * x

$ pydoc time
Help on module time:

>>> help('time')
Help on module time:

f(name):
"Hello

time.asctime()
'Fri Mar 30 12:59:21 2012'

>>> from time import asct ime
>>> asctime()
'Fri Mar 30 13:01:37 2012'

time.asctime = asctime(...)
asctime([tuple]) -> string

...

$ pydoc time.asctime
Help on built-in function asctime in time:

!" % locals()

NAME
time - This module provides various functions to manipulate time values.

...

NAME
time - This module provides various functions to manipulate time values.

...

%(name)s

Further Reading:

On Windows, the

In this example, we’ve imported the time module and called the
current time as a string.

There is also another way to use the import statement.

Writing our own modules is very simple.

For example, create a file called num.py with the following content.

Here were imported just the asctime function from the time module.

The pydoc command provides help on any module or a function.

command is not available. The work-around is to use, the built-in

Modules are reusable libraries of code in Python. Python comes with many standard library modules. A

module is imported using the import statement.

function.

function from that module, which returns

• The article A Plan for Spam by Paul Graham describes a method of detecting spam using probability of
occurrence of a word in spam.

Modules

pydoc

asctime

help

http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://paulgraham.com/
http://paulgraham.com/
http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://paulgraham.com/spam.html
http://paulgraham.com/spam.html

def

>>>

def

return

def
return

>>> import
os >>> print

>>> import
num >>>
9

27

square(x):

num.cube(3)

return x * x

cube(x):

x * x

num.square(3)

Help on module num:

cube(x):
x * x * x

FILE
/Users/anand/num.py

os.getcwd.__doc__
getcwd() -> path

FUNCTIONS
cube(x)

Computes cube of a number.

square(x)
Computes square of a number.

DESCRIPTION
Current it provides square and cube.

Return a string representing the current working directory.

NAME
num - The num module provides utilties to work on numbers.

Now open Python interterter:

Under the hood, python stores the documentation as a special field called

The pydoc command will now show us the doumentation nicely formatted.

Thats all we’ve written a python library.

Try pydoc num (pydoc.bat numbers on Windows) to see documentation for this numbers modules. It won’t have
any documentation as we haven’t providied anything yet.
In Python, it is possible to associate documentation for each module, function using docstrings. Docstrings are
strings written at the top of the module or at the beginning of a function.
Lets try to document our num module by changing the contents of num.py

__doc__.

"""Computes cube of a number."""

Current it provides square and cube. """

"""Computes square of a number."""

"""The num module provides utilties to work on numbers.

os module

urllib module

Standard Library

The module provides functionality to download webpages.

Python comes with many standard library modules. Lets look at some of the most commonly used ones.

Problem 60: Write a program to list all the files in the given directory along with their length and last modification
time. The output should contain one line for each file containing filename, length and modification date separated
by tabs. Hint: see help for os.stat.

Problem 61: Write a program to print directory tree. The program should take path of a directory as argument
and print all the files in it recursively as a tree.

The os and os.path modules provides functionality to work with files, directories etc.

Problem 58: Write a program to list all files in the given directory.

Problem 59: Write a program extcount.py to count number of files for each extension in the given directory. The
program should take a directory name as argument and print count and extension for each available file extension.

urllib

$ python dirtree.py foo
foo
|-- a.txt
|-- b.txt
|-- code
| |--a.py
| |--b.py
| |--docs
| | |--a.txt
| | \--b.txt
| \--x.py
\-- z.txt

$ python extcount.py src/
14py
4txt
1csv

content = request.read()

>>> response.header['Content-Type']
'text/html'

response = urll ib.urlopen("http://python.org/")
response.headers
Date: Fri, 30 Mar 2012 09:24:55 GMT
Server: Apache/2.2.16 (Debian)
Last-Modified: Fri, 30 Mar 2012 08:42:25 GMT
ETag: "105800d-4b7b-4bc71d1db9e40"
Accept-Ranges: bytes
Content-Length: 19323
Connection: close
Content-Type: text/html
X-Pad: avoid browser bug

>>>

>>> import urll ib
>>>
>>> print

re module

json module

zipfile module

The following example prints each file in the zip archive.

The zipfile module provides interface to read and write zip files.

Here are some examples to demonstate the power of zipfile module.

The following example prints names of all the files in a zip archive.

Problem 65: Write a program links.py that takes URL of a webpage as argument and prints all the URLs linked from
that webpage.

Problem 66: Write a regular expression to validate a phone number.

Problem 64: Write a function make_slug that takes a name converts it into a slug. A slug is a string where spaces
and special characters are replaced by a hyphen, typically used to create blog post URL from post title. It should
also make sure there are no more than one hyphen in any place and there are no hyphens at the biginning and end
of the slug.

Problem 67: Write a program myip.py to print the external IP address of the machine. Use the response from
http://httpbin.org/get and read the IP address from there. The program should print only the IP address and
nothing else.

Problem 63: Write a program antihtml.py that takes a URL as argument, downloads the html from web and print it
after stripping html tags.

Problem 62: Write a program wget.py to download a given URL. The program should accept a URL as argument,
download it and save it with the basename of the URL. If the URL ends with a /, consider the basename as
index.html.

z = zipfile.ZipFile("a.zip") for
name in z.namelist():
print name

>>> make_slug("hello world") 'hello-
world'
>>> make_slug("hello world!") 'hello-
world'
>>> make_slug(" --hello- world--")
'hello-world'

$ python wget.py http://docs.python.org/tutorial/
saving http://docs.python.org/tutorial/ as index.html.

$ python antihtml.py index.html
...
The Python interpreter is usually installed as /usr/local/bin/python on those
machines where it is available; putting /usr/local/bin in your
...

$ python wget.py http://docs.python.org/tutorial/interpreter.html
saving http://docs.python.org/tutorial/interpreter.html as interpreter.html.

import zipfile

for in
print
print
print
print

import zipfile

getcwd()
...

FUNCTIONS

DESCRIPTION

$ python mydoc.py os
Help on module os:

z.read(name)

"FILE:", name

z = zipfile.ZipFile("a.zip")
name z.namelist():

$ python zip.py foo.zip fi le1.txt f i le2.txt

os - OS routines for Mac, NT, or Posix depending on what system we're on. . . .

Hints:

•The

•The •

•The

function to get all entries of a module

function can be used to test if given object is a function

gives the docstring for x.

function can be used to import a module by name

PyPI, The Python Package Index maintains the list of Python packages available. The third-party module devel-
opers usually register at PyPI and uploads their packages there.

The standard way to installing a python module is using pip or easy_install. Pip is more modern and perferred.

Lets start with installing easy_install.

• Download the easy_install install script ez_setup.py.

• Run it using Python.

That will install easy_install, the script used to install third-party python packages.

Before installing new packages, lets understand how to manage virtual environments for installing python pack-
ages.

Earlier the only way of installing python packages was system wide. When used this way, packages installed
for one project can conflict with other and create trouble. So people invented a way to create isolated Python
environment to install packages. This tool is called virtualenv.

To install virtualenv:

$ easy_install virtualenv

Problem 68: Write a python program zip.py to create a zip file. The program should take name of zip file as first
argument and files to add as rest of the arguments.

Problem 69: Write a program mydoc.py to implement the functionality of pydoc. The program should take the
module name as argument and print documentation for the module and each of the functions defined in that
module.

dir

inspect.isfunction

x.__doc__

__import__

Installing third-party modules

http://peak.telecommunity.com/dist/ez_setup.py
http://www.virtualenv.org/

On Windows:

Now to switch to that env.

On UNIX/Mac OS X:

It is even possible to create multi-sheet excel files.

Installing virtualenv also installs the pip command, a better replace for

Once it is installed, create a new virtual env by running the

.

command.

This installs a third-party library called tablib.

The tablib library is a small little library to work with tabular data and write csv and Excel files. Here

is a simple example.

Now the virtualenv testenv is activated.

Now all the packages installed will be limited to this virtualenv. Lets try to install a third-party package.

Problem 70: Write a program csv2xls.py that reads a csv file and exports it as Excel file. The prigram should take
two arguments. The name of the csv file to read as first argument and the name of the Excel file to write as the
second argument.

easy_install

virtualenv

$ virtualenv testenv

$ pip install tablib

data.append(["A", 1])
data.append(["B", 2])
data.append(["C", 3])

data = tablib.Dataset()

sheet1 = tablib.Dataset()
sheet1.append(["A1", 1])
sheet1.append(["A2", 2])

sheet2 = tablib.Dataset()
sheet2.append(["B1", 1])
sheet2.append(["B2", 2])

> testenv\Scripts\activate

open('test.csv', 'wb')
f.write(data.csv)

open('test.xls', 'wb')
f.write(data.xls)

open('test.xlsx', 'wb')
f.write(data.xlsx)

$ source testenv/bin/activate

f:

f:

f:

book = tablib.Databook([data1, data2])
with open('book.xlsx', 'wb') as f:
f.write(book.xlsx)

Add rows

save as csv

save as Excel

create a dataset

save as Excel 07+

with

with

with

as

as

as

Suppose we want to model a bank account with support for
do that is by using global state as shown in the following example.

With this it is possible to work with multiple accounts at the same time.

and operations. One way to

The above example is good enough only if we want to have just a single account. Things start getting complicated if
want to model multiple accounts.

We can solve the problem by making the state local, probably by using a dictionary to store the state.

Problem 71: Create a new virtualenv and install BeautifulSoup. BeautifulSoup is very good library for parsing HTML.
Try using it to extract all HTML links from a webpage.

Read the BeautifulSoup documentation to get started.

Object Oriented Programming

State

Classes and Objects

deposit withdraw

50

40

90

balance = 0

withdraw(b, 10)

withdraw(a, 10)

deposit(amount):
balance
balance += amount
return balance

withdraw(amount):
balance
balance -= amount
return balance

>>> a = make_account()
>>> b = make_account()
>>> deposit(a, 100)
100
>>> deposit(b, 50)

:
__init__(self):
self.balance = 0

make_account():
{'balance': 0}

withdraw(self, amount):

deposit(account, amount):
account['balance'] += amount
return account['balance']

withdraw(account, amount):
account['balance'] -= amount
return account['balance']

def

def

>>>

>>>

def

def
global

def
global

def
return

class BankAccount
def

http://www.crummy.com/software/BeautifulSoup/bs3/documentation.html
http://www.crummy.com/software/BeautifulSoup/bs3/documentation.html

g(self):
'A'

(A):
g(self):

'B'

a = A()
b = B()
print a.f(), b.f()
print a.g(), b.g()

>>> a = BankAccount()
>>> b = BankAccount()
>>> a.deposit(100)
100
>>> b.deposit(50)
50
>>> b.withdraw(10)
40
>>> a.withdraw(10)
90

:
f(self):

self.g()

self.balance -= amount
return self.balance

deposit(self, amount):
self.balance += amount
return self.balance

:
__init__(self, width, height):
self.width = width
self.height = height
self.data = [[' '] * width for i

setpixel(self, row, col):
self.data[row][col] = '*'

(BankAccount):
__init__(self, minimum_balance):
BankAccount.__init__(self)
self.minimum_balance = minimum_balance

range(height)]

withdraw(self, amount):
self.balance - amount < self.minimum_balance:

print 'Sorry, minimum balance must be maintained.'
else :
BankAccount.withdraw(self, amount)

def

def

def
if

class Canvas
def

class A
def

return

def
return

class B
def

return

class MinimumBalanceAccount
def

in

Inheritance

What will the output of the following program.

Let us try to create a little more sophisticated account type where the account holder has to maintain a pre-
determined minimum balance.

Problem 72:

Example: Drawing Shapes

>>
>
>>
>
3
>>>
3

def

class Shape
def

def
for

class Square
def

def
pass

def
pass

def
print

def
return

class Rectangle
def

class CompoundShape
def

pass

for in

a , b = 1 , 2
a + b

a . _ _ a d d _ _ (b)

:
p a i n t (s e l f , c a n v a s) :

p a i n t (s e l f , c a n v a s) :
s i n s e l f . s h a p e s :

s . p a i n t (c a n v a s)

h l i n e (s e l f , x , y , w) :

v l i n e (s e l f , x , y , h) :

(S h a p e) :
_ _ i n i t _ _ (s e l f , s h a p e s) :
s e l f . s h a p e s = s h a p e s

g e t p i x e l (s e l f , r o w , c o l) :
s e l f . d a t a [r o w] [c o l]

(S h a p e) :
_ _ i n i t _ _ (s e l f , x , y , w , h) :
s e l f . x = x
s e l f . y = y
s e l f . w = w
s e l f . h = h

d i s p l a y (s e l f) :
" \ n " . j o i n ([" " . j o i n (r o w) r o w

p a i n t (s e l f , c a n v a s) :
h l i n e (s e l f . x , s e l f . y , s e l f . w)
h l i n e (s e l f . x , s e l f . y + s e l f . h , s e l f . w)
v l i n e (s e l f . x , s e l f . y , s e l f . h)
v l i n e (s e l f . x + s e l f . w , s e l f . y , s e l f . h)

(R e c t a n g l e) :
_ _ i n i t _ _ (s e l f , x , y , s i z e) :
R e c t a n g l e . _ _ i n i t _ _ (s e l f , x , y , s i z e , s i z e)

s e l f . d a t a])

Special Class Methods

Just like
/ operators.

is called for operator, and methods are called for ,and

Suppose we want to do arithmetic with rational numbers. We want to be able to add, subtract, multiply, and divide
them and to test whether two rational numbers are equal.

In Python, a class can implement certain operations that are invoked by special syntax (such as arithmetic opera-
tions or subscripting and slicing) by defining methods with special names. This is Python’s approach to operator
overloading, allowing classes to define their own behavior with respect to language operators.

For example, the + operator invokes __add__ method.

_ _ a d d _ _ + _ _ s u b _ _ , _ _ m u l _ _ _ _ d i v _ _ - , *

Example: Rational Numbers

Lets write the rational number class.

We can add, subtract, multiply, divide, and test equality by using the following relations:

n 1 , d 1 = s e l f . n , s e l f . d
n 2 , d 2 = o t h e r . n , o t h e r . d
r e t u r n R a t i o n a l N u m b e r (n 1 * d 2 , d 1 * n 2)

_ _ s t r _ _ (s e l f) :
" % s / % s " % (s e l f . n , s e l f . d)

n 1 / d 1 + n 2 / d 2 = (n 1 * d 2 + n 2 * d 1) / (d 1 * d 2)
n 1 / d 1 - n 2 / d 2 = (n 1 * d 2 - n 2 * d 1) / (d 1 * d 2)
n 1 / d 1 * n 2 / d 2 = (n 1 * n 2) / (d 1 * d 2)
(n 1 / d 1) / (n 2 / d 2) = (n 1 * d 2) / (d 1 * n 2)

n 1 / d 1 = = n 2 / d 2 i f a n d o n l y i f n 1 * d 2 = = n 2 * d 1

n = s e l f . n * o t h e r . d + s e l f . d * o t h e r . n
d = s e l f . d * o t h e r . d
r e t u r n R a t i o n a l N u m b e r (n , d)

_ _ a d d _ _ (s e l f , o t h e r) :
i s i n s t a n c e (o t h e r , R a t i o n a l N u m b e r) :

o t h e r = R a t i o n a l N u m b e r (o t h e r)

_ _ s u b _ _ (s e l f , o t h e r) :
i s i n s t a n c e (o t h e r , R a t i o n a l N u m b e r) :

o t h e r = R a t i o n a l N u m b e r (o t h e r)

n 1 , d 1 = s e l f . n , s e l f . d
n 2 , d 2 = o t h e r . n , o t h e r . d
r e t u r n R a t i o n a l N u m b e r (n 1 * n 2 , d 1 * d 2)

_ _ d i v _ _ (s e l f , o t h e r) :
i s i n s t a n c e (o t h e r , R a t i o n a l N u m b e r) :

o t h e r = R a t i o n a l N u m b e r (o t h e r)

_ _ i n i t _ _ (s e l f , n u m e r a t o r ,
d e n o m i n a t o r = 1) : s e l f . n = n u m e r a t o r
s e l f . d = d e n o m i n a t o r

n 1 , d 1 = s e l f . n , s e l f . d
n 2 , d 2 = o t h e r . n , o t h e r . d
r e t u r n R a t i o n a l N u m b e r (n 1 * d 2 - n 2 * d 1 , d 1 * d 2)

_ _ m u l _ _ (s e l f , o t h e r) :
i s i n s t a n c e (o t h e r , R a t i o n a l N u m b e r) :
o t h e r = R a t i o n a l N u m b e r (o t h e r)

def

def
if not

def
if not

def
if not

def
if not

def
return

class RationalNumber :

>>> a = RationalNumber(1, 2)
>>> b = RationalNumber(1, 3)

>>>a+b
5/6
>>>a-b
1/6
>>>a*b
1/6
>>> a/b
3/2
"""

"""
Rational Numbers with support for arthmetic operations.

:
. . .

:

:
. . .

I O E r r o r :
. . .

_ _ r e p r _ _ = _ _ s t r _ _

> > > f o o
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :

F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
N a m e E r r o r : n a m e ' f o o ' i s n o t d e f i n e d

> > > " f o o " + 2
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :
F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
T y p e E r r o r : c a n n o t c o n c a t e n a t e ' s t r ' a n d ' i n t ' o b j e c t s

> > > 2 / 0
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :
F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
Z e r o D i v i s i o n E r r o r : i n t e g e r d i v i s i o n o r m o d u l o b y z e r o

> > > o p e n (" n o t - t h e r e . t x t ")
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :
F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
I O E r r o r : [E r r n o 2] N o s u c h f i l e o r d i r e c t o r y : ' n o t - t h e r e . t x t '

m a i n () :
f i l e n a m e = s y s . a r g v [1]
try :
f o r r o w i n p a r s e _ c s v (f i l e n a m e) :
print row
e x c e p t I O E r r o r :

p r i n t > > s y s . s t d e r r , " T h e g i v e n f i l e d o e s n ' t e x i s t : " , f i l e n a m e
s y s . e x i t (1)

Errors and Exceptions

try dividing a number by 0:

try adding a string to an integer:

or, try opening a file that is not there:

We’ve already seen exceptions in various places. Python gives
not defined.

This above example prints an error message and exits with an error status when an IOError is encountered.

The except statement can be written in multiple ways:

when we try to use a variable that is

Python raises exception in case errors. We can write programs to handle such errors. We too can raise exceptions
when an error case in encountered.

Exceptions are handled by using the try-except statements.

N a m e E r r o r

def

try

try

except

except

catch all exceptions

catch just one exception

catch one exception, but provide the exception object

try

try

try

try

try

raise

except

except

finally

except
print

except
print

except
print

try :
print

except :
print

else :
print

finally :
print

try :
print
raise

except
print

else
print

" a "

" b "

" c "

" d "

:
. . .

I O E r r o r , e :
. . .

" a "
E x c e p t i o n (" d o o m ")

E x c e p t i o n (" e r r o r m e s s a g e ")

:
. . .

(I O E r r o r , V a l u e E r r o r) , e :
. . .

:
. . .
I O E r r o r , e :

> > s y s . s t d e r r , " U n a b l e t o o p e n t h e f i l e (
s y s . e x i t (1)
:
" s u c c e s s f u l l y o p e n e d t h e f i l e " , f i l e n a m e

:
. . .
I O E r r o r , e :

> > s y s . s t d e r r , " U n a b l e t o o p e n t h e f i l e (
s y s . e x i t (1)
:
d e l e t e _ t e m p _ f i l e s ()

:
. . .
I O E r r o r , e :

> > s y s . s t d e r r , " U n a b l e t o o p e n t h e f i l e (
s y s . e x i t (1)
F o r m a t E r r o r , e :

> > s y s . s t d e r r , " F i l e i s b a d l y f o r m a t t e d (

) :

) :

) :

) :

" % (s t r (e) , f i l e n a m e)

" % (s t r (e) , f i l e n a m e)

" % (s t r (e) , f i l e n a m e)

" % (s t r (e) , f i l e n a m e)

catch more than one exception

%s

%s

%s

%s

%s

%s

%s

%s

The

There can be an
optional has occured.

It is possible to have more than one

statement can have an optional

clause with a

Exception is raised using the raised keyword.

statements with one

What will be the output of the following program?

All the exceptions are extended from the built-in Exception class.

class ParseError(Exception): pass

Problem 73: What will be the output of the following program?

statement, which is executed irrespective of whether or not exception

clause, which is executed only if no exception is raised in the try-block.try

else

except

else

try

try.

Problem 74:

except :
print

else :
print

finally :
print

>>> for i in
. . . print
. . .

>>> for c in
. . . print
. . .

>>> for k in
. . . print
. . .

de f f () :
try :
print

return
except :
print
else :
print
finally :
print

>>> for l ine in
. . . print
. . .

1
2
3
4

p
y
t
h
o
n

y
x

f ()

" b "

" c "

" d "

" a "

" b "

" c "

" d "

" p y t h o n " :
c

[1 , 2 , 3 , 4] :
i ,

o p e n (" a . t x t ") :
l i n e ,

{ " x " : 1 , " y " : 2 } :
k

Problem 75:

We use statement for looping over a list.

If we use it with a dictionary, it loops over its keys.

If we use it with a file, it loops over lines of the file.

If we use it with a string, it loops over its characters.

What will be the output of the following program?

Iterators & Generators

Iterators

f o r

The Iteration Protocol

f i r s t l i n e
s e c o n d l i n e

x . n e x t ()

x . n e x t ()

_ _ i t e r _ _ (s e l f) :
s e l f

:
_ _ i n i t _ _ (s e l f , n) :
s e l f . i = 0
s e l f . n = n

n e x t (s e l f) :
s e l f . i < s e l f . n :

i = s e l f . i
s e l f . i + = 1

i

>>> " , " . j o i n ([" a " , " b " , " c "])
' a , b , c '
>>> " , " . j o i n ({ " x " : 1 , " y " : 2 })
' y , x '
>>> l i s t (" p y t h o n ")
[' p ' , ' y ' , ' t ' , ' h ' , ' o ' , ' n '] >>>
l i s t ({ " x " : 1 , " y " : 2 }) [' y ' , ' x ']

S t o p I t e r a t i o n ()

>>> x = i t e r ([1 , 2 , 3])
>>>x
< l i s t i t e r a t o r o b j e c t a t 0 x 1 0 0 4 c a 8 5 0 >
x . n e x t ()

>>> x . n e x t ()
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :

F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
S t o p I t e r a t i o n

The built-in function takes an iterable object and returns an iterator.

Each time we call the next method on the iterator gives us the next element.
raises a StopIteration.

Iterators are implemented as classes. Here is an iterator that works like built-in function.

The __iter__ method is what makes an object iterable. Behind the scenes, the iter function calls
method on the given object.

The return value of __iter__ is an iterator. It should have a next method and raise
there are no more elements.
Lets try it out:

So there are many types of objects which can be used with a for loop. These are called iterable objects.

There are many functions which consume these iterables.

when

If there are no more elements, it

>>>
1
>>>
2
>>>
3

def
if

class yrange
def

def
return

return
else :
raise

i t e r

x r a n g e

S t o p I t e r a t i o n

_ _ i t e r _ _

>>
>
>>
>
0
>>>
1
>>>
2

def

def
if

class zrange
def

def
return

return

class zrange_iter
def

return
else :
raise

1 0

[]

y . n e x t ()

y . n e x t ()

y =
y r a n g e (3)
y . n e x t ()

>>> y =
y r a n g e (5) >>>
l i s t (y)
[0 , 1 , 2 , 3 , 4]
>>> l i s t (y)
>>> z =
z r a n g e (5) >>>
l i s t (z)
[0 , 1 , 2 , 3 , 4]
>>> l i s t (z)
[0 , 1 , 2 , 3 , 4]

s e l f

>>>
l i s t (y r a n g e (5)) [0 ,
1 , 2 , 3 , 4]
>>>
s u m (y r a n g e (5))

_ _ i t e r _ _ (s e l f) :

:
_ _ i n i t _ _ (s e l f , n) :
s e l f . n = n

:
_ _ i n i t _ _ (s e l f , n) :
s e l f . i = 0
s e l f . n = n

n e x t (s e l f) :
s e l f . i < s e l f . n :

i = s e l f . i
s e l f . i + = 1

i

S t o p I t e r a t i o n ()

_ _ i t e r _ _ (s e l f) :
z r a n g e _ i t e r (s e l f . n)

>>> y . n e x t ()
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :

F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
F i l e " < s t d i n > " , l i n e 1 4 , i n n e x t
S t o p I t e r a t i o n

::
Write an iterator class

Many built-in functions accept iterators as arguments.

In the above case, both the iterable and iterator are the same object. Notice that the
self. It need not be the case always.

If both iteratable and iterator are the same object, it is consumed in a single iteration.

method returned

, that takes a list and iterates it from the reverse direction.r e v e r s e _ i t e r

_ _ i t e r _ _

Iterators are iterables too.
Adding this functions to make them so.

Problem 76:

>>
>
>>
>
4
>>>
3
>>>
2
>>>
1

def

>>>
1
>>>
2

>>> def
. . . print
.. . for in
. . . print
. . . yield
. . . print
. . . print
.. .

y . n e x t ()

y . n e x t ()

i t . n e x t ()

i t . n e x t ()

i t . n e x t ()

y r a n g e (n) :
i = 0
whi le i < n :
yield i
i + = 1

i t = r e v e r s e _ i t e r ([1 , 2 , 3 , 4])
i t . n e x t ()

f o o () :
" b e g i n "
i r a n g e (3) :

" b e f o r e y i e l d " , i
i
" a f t e r y i e l d " , i
" e n d "

>>> y = y r a n g e (3)
>>>y
< g e n e r a t o r o b j e c t y r a n g e a t
0 x 4 0 1 f 3 0 > >>> y . n e x t ()
0

>>> i t . n e x t ()
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :

F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
S t o p I t e r a t i o n

>>> y . n e x t ()
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :

F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
S t o p I t e r a t i o n

Generators

Each time the statement is executed the function generates a new value.

Generators simplifies creation of iterators. A generator is a function that produces a sequence of results instead of
a single value.

So a generator is also an iterator. You don’t have to worry about the iterator protocol.

The word “generator” is confusingly used to mean both the function that generates and what it generates. In this
chapter, I’ll use the word “generator” to mean the genearted object and “generator function” to mean the function
that generates it.

Can you think about how it is working internally?

When a generator function is called, it returns a generator object without even beginning execution of the function.
When next method is called for the first time, the function starts executing until it reaches yield statement.
The yielded value is returned by the next call.

The following example demonstrates the interplay between yield and call to next method on generator object.

y i e l d

def

def

print

except
pass

return

def
for in

yield

for in> > >
s u m ((x * x
2 8 5

i n t e g e r s () :

r e s u l t

i = 1
w h i l e T r u e :
yield i

i = i + 1

x

t a k e (5 , s q u a r e s ())

s q u a r e s () :
i i n t e g e r s () :

i * i

t a k e (n , s e q) :

r a n g e (1 0)))

s e q = i t e r (s e q)
r e s u l t = []
try :
f o r i i n r a n g e (n) :

r e s u l t . a p p e n d (s e q . n e x t ())
S t o p I t e r a t i o n :

> > > f = f o o ()
> > > f . n e x t ()
b e g i n
b e f o r e y i e l d 0
0
> > > f . n e x t ()
a f t e r y i e l d 0
b e f o r e y i e l d 1
1
> > > f . n e x t ()
a f t e r y i e l d 1
b e f o r e y i e l d 2
2
> > > f . n e x t ()
a f t e r y i e l d 2
e n d
T r a c e b a c k (m o s t r e c e n t c a l l l a s t) :

F i l e " < s t d i n > " , l i n e 1 , i n < m o d u l e >
S t o p I t e r a t i o n
> > >

> > > a = (x * x f o r x i n r a n g e (1 0))
>>>a
< g e n e r a t o r o b j e c t < g e n e x p r > a t 0 x 4 0 1 f 0 8 >
> > > s u m (a)
2 8 5

Lets see an example:

We can use the generator expressions as arguments to various functions that consume iterators.

Generator Expressions are generator version of list comprehensions. They look like list comprehensions, but
returns a generator back instead of a list.

"""Infinite sequence of integers."""

prints [1, 4, 9, 16, 25]

"""Returns first n values from the given sequence."""

Generator Expressions

Example: Reading multiple files

Both these programs have lot of code in common.
generators makes it possible to do it.

Now, lets say we want to print only the line which has a particular substring, like command in unix.

It is hard to move the common part to a function. But with

When there is only one argument to the calling function, the parenthesis around generator expression can be
omitted.

Lets say we want to write a program that takes a list of filenames as arguments and prints contents of all those
files, like cat command in unix.

The traditional way to implement it is:

The code is much simpler now with each function doing one small thing. We can move all these functions into a
separate module and reuse it in other programs.

Problem 77: Write a program that takes one or more filenames as arguments and prints all the lines which are
longer than 40 characters.

Another fun example:

Lets say we want to find first 10 (or any n) pythogorian triplets. A triplet (x, y, z) is called pythogorian triplet
i f x * x + y * y = = z * z .

It is easy to solve this problem if we know till what value of z to test for. But we want to find first n pythogorian
triplets.

def

def
return

def
for in
for

if

for

def
for in

print

def
for in

for in
print

def
for in

for in
yield

in

in if in

> > >
s u m (x * x
2 8 5

x

p r i n t l i n e s (l i n e s) :
l i n e l i n e s :

l i n e ,

g r e p (p a t t e r n , l i n e s) :
(l i n e f o r l i n e

c a t (f i l e n a m e s) :
f f i l e n a m e s :

l i n e o p e n (f) :
l i n e ,

r e a d f i l e s (f i l e n a m e s) :
f f i l e n a m e s :

l i n e o p e n (f) :
l i n e

g r e p (p a t t e r n , f i l e n a m e s) :
f f i l e n a m e s :
l i n e i n o p e n (f) :

p a t t e r n i n l i n e :
p r i n t l i n e ,

r a n g e (1 0))

m a i n (p a t t e r n , f i l e n a m e s) :
l i n e s = r e a d f i l e s (f i l e n a m e s)
l i n e s = g r e p (p a t t e r n , l i n e s)
p r i n t l i n e s (l i n e s)

l i n e s p a t t e r n l i n e)

> > > p y t = ((x , y , z) f o r z i n i n t e g e r s () f o r y i n x r a n g e (1 , z) f o r x i n r a n g e (1 , y) i f x * x + y * y = > > >
t a k e (1 0 , p y t)
[(3 , 4 , 5) , (6 , 8 , 1 0) , (5 , 1 2 , 1 3) , (9 , 1 2 , 1 5) , (8 , 1 5 , 1 7) , (1 2 , 1 6 , 2 0) , (1 5 , 2 0 , 2 5) , (7 , 2 4 ,

g r e p

izip

Problem 85:

Further Reading

recursively.

– iterable version of zip

Problem 83: Write a function
equivalant iterator.

Problem 84: The built-in function
for each value in the source.

Write a function my_enumerate that works like

Implement a function izip that works like

The itertools module in the standard library provides lot of intersting tools to work with iterators.

Lets look at some of the interesting functions.

chain – chains multiple iterators together.

, that takes an iterator as argument and returns the first element and an

Problem 78: Write a function findfiles that recursively descends the directory tree for the specified directory and
generates paths of all the files in the tree.

Problem 79: Write a function to compute the number of python files (.py extension) in a specified directory

• GeneratorTricksForSystemProgramersbyDavidBeazlyisanexcellentin-depthintroductiontogenerators
and generator expressions.

takes an iteratable and returns an iterator over pairs (index, value)

Problem 80: Write a function to compute the total number of lines of code in all python files in the specified
directory recursively.

Problem 81: Write a function to compute the total number of lines of code, ignoring empty and comment lines,
in all python files in the specified directory recursively.
Problem 82: Write a program split.py, that takes an integer n and a filename as command line arguments and
splits the file into multiple small files with each having n lines.

p e e p

e n u m e r a t e

e n u m e r a t e .

i t e r t o o l s . i z i p .

Iter tools

>>> for x , y in
. . . print
. . .

>>>for in
. . . print
. . .

a
1
b
2
c
3

0
a
1
b
2
c

> > > i t = i t e r (r a n g e (5))
> > > x , i t 1 = p e e p (i t)
> > > p r i n t x , l i s t (i t 1)
0 [0 , 1 , 2 , 3 , 4]

> > > i t 1 = i t e r ([1 , 2 , 3])
> > > i t 2 = i t e r ([4 , 5 , 6])
> > > i t e r t o o l s . c h a i n (i t 1 , i t 2)
[1 , 2 , 3 , 4 , 5 , 6]

> > > l i s t (e n u m e r a t e ([" a " , " b " , " c "])
[(0 , " a ") , (1 , " b ") , (2 , " c ")]

i , c e n u m e r a t e ([" a " , " b " , " c "]) :
i , c

i t e r t o o l s . i z i p ([" a " , " b " , " c "] , [1 , 2 , 3]) :
x , y

http://www.dabeaz.com/generators-uk/
http://dabeaz.com/
http://www.dabeaz.com/generators-uk/
http://www.dabeaz.com/generators-uk/
http://www.dabeaz.com/generators-uk/

Example: Computing Exponent

Functional Programming

Recursion

Lets look at the execution pattern.

Lets look at the execution pattern now.

Mathematically we can define exponent of a number in terms of its smaller power.

Number of calls to the above exp function is proportional to size of the problem, which is

We can compute exponent in fewer steps if we use successive squaring.
here.

Defining solution of a problem in terms of the same problem, typically of smaller size, is called recursion. Recur-
sion makes it possible to express solution of a problem very concisely and elegantly.

A function is called recursive if it makes call to itself. Typically, a recursive function will have a terminating
condition and one or more recursive calls to itself.

def

if

def
if

return
else :

return

e x p (x , n) :

n = = 0 :
1

f a s t _ e x p (2 , 1 0)
+ - - f a s t _ e x p (4 , 5) # 2 * 2
| + - - 4 * f a s t _ e x p (4 , 4)

x * e x p (x , n - 1)

f a s t _ e x p (x , n) :
n = = 0 :
return 1
e l i f n % 2 = = 0 :
r e t u r n f a s t _ e x p (x * x , n / 2))
else :

r e t u r n x * f a s t _ e x p (x , n - 1)

e x p (2 , 4)
+ - - 2 * e x p (2 , 3)
| + - - 2 * e x p (2 , 2)
| | + - - 2 * e x p (2 , 1)
| | | + - - 2 * e x p (2 , 0) | | | | + - - 1
| | | + - - 2 * 1
| | | + - - 2
| | + - - 2 * 2
| | + - - 4
| + - - 2 * 4
| + - - 8
+ - - 2 * 8
+ - - 1 6

>>> exp(2, 3)
8

>>> exp(3, 2)
9
"""

"""
Computes the result of x raised to the power of n.

n

Example: Flatten a list

Example: JSON Encode

r e s u l t

r e s u l t i s N o n e :
r e s u l t = []

f l a t t e n _ l i s t (a , r e s u l t = N o n e) :

a :
i s i n s t a n c e (x , l i s t) :

f l a t t e n _ l i s t (x , r e s u l t)
:
r e s u l t . a p p e n d (x)

> > > t r e e _ r e v e r s e ([[1 , 2] , [3 , [4 , 5]] , 6])
[6 , [[5 , 4] , 3] , [2 , 1]]

| | + - - f a s t _ e x p (1 6 , 2) # 4 * 4
| | | + - - f a s t _ e x p (2 5 6 , 1) # 1 6 * 1 6 | | | | + -
- 2 5 6 * f a s t _ e x p (2 5 6 , 0)
| | | | + - - 1
| | | | + - - 2 5 6 * 1
| | | | + - - 2 5 6
| | | + - - 2 5 6
| | + - - 2 5 6
| + - - 4 * 2 5 6
| + - - 1 0 2 4
+ - - 1 0 2 4
1 0 2 4

> > > t r e e m a p (l a m b d a x : x * x , [1 , 2 , [3 , 4 , [5]]])
[1 , 4 , [9 , 1 6 , [2 5]]]

> > > u n f l a t t e n _ d i c t ({ ' a ' : 1 , ' b . x ' : 2 , ' b . y ' : 3 , ' c ' : 4 }) { ' a ' :
1 , ' b ' : { ' x ' : 2 , ' y ' : 3 } , ' c ' : 4 }

> > > f l a t t e n _ d i c t ({ ' a ' : 1 , ' b ' : { ' x ' : 2 , ' y ' : 3 } , ' c ' : 4 }) { ' a ' : 1 ,
' b . x ' : 2 , ' b . y ' : 3 , ' c ' : 4 }

Problem 87:

Problem 86:

Problem 88:

Problem 89:

Problem 90:

Write a function

Write a function

Write a function

Write a function

Implement a function

Supposed you have a nested list and want to flatten it.

to do reverse of

to map a function over nested list.

to multiply 2 numbers recursively using and

to reverse elements of a nested-list recursively.

to flatten a nested dictionary by joining the keys with

operators only.

Lets look at more commonly used example of serializing a python datastructure into JSON (JavaScript Object
Notation).

character.

t r e e m a p

p r o d u c t

f l a t t e n _ d i c t

t r e e _ r e v e r s e

u n f l a t t e n _ d i c t f l a t t e n _ d i c t .

+ -

.

def

if

return

for x in
if

else

"""Flattens a nested list.

>>> flatten_list([[1, 2, [3, 4]], [5, 6], 7])
[1, 2, 3, 4, 5, 6, 7]
"""

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON

Here is an example of JSON record.

It looks very much like Python dictionaries and lists. There are some differences though. Strings are always
enclosed in double quotes, booleans are represented as true and false.

The standard library module json provides functionality to work in JSON. Lets try to implement it now as it is
very good example of use of recursion.
For simplicity, lets assume that strings will not have any special characters and can have space, tab and newline
characters.

This handles booleans, integers, strings, floats and lists, but doesn’t handle dictionaries yet. That is left an
exercise to the readers.

If you notice the block of code that is handling lists, we are calling json_encode recursively for each element of
the list, that is required because each element can be of any type, even a list or a dictionary.
Problem 91: Complete the above implementation of json_encode by handling the case of dictionaries.

Problem 92: Implement a program dirtree.py that takes a directory as argument and prints all the files in that
directory recursively as a tree. Hint: Use os.listdir and os.path.isdir funtions.

{

}
]

}

} ,
{

e s c a p e _ s t r i n g (s) :

T y p e E r r o r ("

s = s . r e p l a c e (' " ' , ' \ \ " ')
s = s . r e p l a c e (" \ t " , " \ \ t ") s
= s . r e p l a c e (" \ n " , " \ \ n ")
return s

j s o n _ e n c o d e (d a t a) :
i s i n s t a n c e (d a t a , b o o l) :

i f d a t a :
" t r u e "

" n a m e " : " P a r t i c i p a n t 2 " ,
" e m a i l " : " e m a i l 2 @ e x a m p l e . c o m "

" n a m e " : " A d v a n c e d P y t h o n T r a i n i n g " ,
" d a t e " : " O c t o b e r 1 3 , 2 0 1 2 " ,
" c o m p l e t e d " : f a l s e ,
" i n s t r u c t o r " : {
" n a m e " : " A n a n d C h i t i p o t h u " ,
" w e b s i t e " : " h t t p : / / a n a n d o l o g y . c o m / "

} ,
" p a r t i c i p a n t s " : [
{
" n a m e " : " P a r t i c i p a n t 1 " ,
" e m a i l " : " e m a i l 1 @ e x a m p l e . c o m "

" f a l s e "
i s i n s t a n c e (d a t a , (i n t , f l o a t)) :
s t r (d a t a)
i s i n s t a n c e (d a t a , s t r) :

' " ' + e s c a p e _ s t r i n g (d a t a) + ' " '
i s i n s t a n c e (d a t a , l i s t) :
" [" + " , " . j o i n (j s o n _ e n c o d e (d) d d a t a) + "] "

i s n o t J S O N s e r i a l i z a b l e " % r e p r (d a t a))

def

def
if

return
else :

return
elif

return
elif

return
elif

return
else :
raise

for in

%s

"""Escapes double-quote, tab and new line characters in a string."""

Example: Tracing Function Calls

f i b 3
f i b 2
f i b 1
r e t u r n 1
f i b 0
r e t u r n 1

f i b (n) :
n 0

f i b = t r a c e (f i b)
p r i n t f i b (3)

n
1

1 :

$ p y t h o n d i r t r e e . p y
f o o / f o o /
| - - a . t x t
| - - b . t x t
| - - b a r /
| | - - p . t x t
| ` - - q . t x t
` - - c . t x t

c o u n t _ c h a n g e (1 0 , [1 , 5])

c o u n t _ c h a n g e (1 0 , [1 , 2])

f i b (n - 1) + f i b (n - 2)

t r a c e (f) :
g (x) :
f . _ _ n a m e _ _ , x
v a l u e = f (x)

' r e t u r n ' , r e p r (v a l u e)
v a l u e

> > > c o u n t _ c h a n g e (1 0 0 , [1 , 5 , 1 0 , 2 5 , 5 0])
2 9 2

> > > p e r m u t e ([1 , 2 , 3])
[[1 , 2 , 3] , [1 , 3 , 2] , [2 , 1 , 3] , [2 , 3 , 1] , [3 , 1 , 2] , [3 , 2 , 1]]

Problem 94: Write a function

This produces the following output.

For example, consider the following function.

to compute all possible permutations of elements of a given list.

Suppose we want to trace all the calls to the fib function. We can write a higher order function to return a new
function, which prints whenever fib function is called.

In Python, functions are first-class objects. They can be passed as arguments to other functions and a new
functions can be returned from a function call.

Problem 93: Write a function count_change to count the number of ways to change any given amount. Available
coins are also passed as argument to the function.

f i b

p e r m u t e

>>>
3
>>>
6

def
if

def
def

print

print
return

return g

isor
return
else :
return

is

Higher Order Functions & Decorators

Example: Memoize

r e t u r n 2
f i b 1
r e t u r n 1
r e t u r n 3
3

f i b (n) :
. . .

f i b = t r a c e (f i b)
p r i n t f i b (4)

$ p y t h o n f i b . p y
| - - f i b 4
| | - - f i b 3
| | | - - f i b 2
| | | | - - f i b 1
| | | | | - - r e t u r n 1 | | | | - -
f i b 0
| | | | | - - r e t u r n 1 | | | | - -
r e t u r n 2
| | | - - f i b 1
| | | | - - r e t u r n 1
| | | - - r e t u r n 3
| | - - f i b 2
| | | - - f i b 1
| | | | - - r e t u r n 1
| | | - - f i b 0
| | | | - - r e t u r n 1
| | | - - r e t u r n 2
| | - - r e t u r n 5
5

t r a c e (f) :
f . i n d e n t = 0
d e f g (x) :
p r i n t ' | ' * f . i n d e n t + ' | - - ' , f . _ _ n a m e _ _ , x
f . i n d e n t + = 1
v a l u e = f (x)

p r i n t ' | ' * f . i n d e n t + ' | - - ' , ' r e t u r n ' , r e p r (v a l u e)
f . i n d e n t - = 1
v a l u e

It is equivalant of adding

This produces the following output.

after the function definition.

This pattern is so useful that python has special syntax for specifying this concisely.

In the above example, it is clear that number of function calls are growing exponentially with the size of input and
there is lot of redundant computation that is done.

Suppose we want to get rid of the redundant computation by caching the result of fib when it is called for the

Noticed that the trick here is at fib = trace(fib). We have replaced the function fib with a new function, so
whenever that function is called recursively, it is the our new function, which prints the trace before calling the
orginal function.

To make the output more readable, let us indent the function calls.

f i b = t r a c e (f i b)

def

@trac
e def

return
return g

Example: unixcommand decorator

If you notice, after

Lets see how to use it.

, growth of has become linear.

Problem 95: Write a function profile, which takes a function as argument and returns a new function, which
behaves exactly similar to the given function, except that it prints the time consumed in executing it.

first time and reuse it when it is needed next time. Doing this is very popular in functional programming world and
it is called memoize.

Many unix commands have a typical pattern. They accept multiple filenames as arguments, does some processing
and prints the lines back. Some examples of such commands are cat and grep.

Problem 96: Write a function vectorize which takes a function f and return a new function, which takes a list as
argument and calls f for every element and returns the result as a list.

m e m o i z e f i b

def

def
def

>>>
def . . .
>>>
>>>

return

return
return g

return

for
for

g

f i b = t r a c e (f i b)
f i b = m e m o i z e (f i b)
p r i n t f i b (4)

s q u a r e (x) :

> > > f i b = p r o f i l e (f i b)
> > > f i b (2 0)
t i m e t a k e n : 0 . 1 s e c
1 0 9 4 6

u n i x c o m m a n d (f) :
g (f i l e n a m e s) :

p r i n t l i n e s (o u t

| - - f i b 4
| | - - f i b 3
| | | - - f i b 2
| | | | - - f i b 1
| | | | | - - r e t u r n 1 | | | | - -
f i b 0
| | | | | - - r e t u r n 1 | | | | - -
r e t u r n 2
| | | - - r e t u r n 3
| | - - r e t u r n 5
5

f = v e c t o r i z e (s q u a r e)
f ([1 , 2 , 3])
[1 , 4 , 9]
> > > g = v e c t o r i z e (l e n)
> > > g ([" h e l l o " , " w o r l d "])
[5 , 5]
> > > g ([[1 , 2] , [2 , 3 , 4]]) [2 ,
3]

m e m o i z e (f) :
c a c h e = { }
d e f g (x) :
if x not in cache:

c a c h e [x] = f (x)
c a c h e [x]

x * x

l i n e i n r e a d l i n e s (f i l e n a m e s)
o u t i n f (l i n e))

>>>
5
>>
>
>>
>
4
>>
>
>>
>

>>>
6

>>>
exec
>>>x
1

>>>
>>> exec
>>> print

@unixcomm
and def
yield

@unixcomm
and def
yield

>>>
>>>for in . . .
exec . . .
> > >
a d d _ 1 (3) 4

4 3

4 3

a d d _ 3 (3)

c a t (l i n e) :
l i n e

e v a l (" 2 + 3 ")

(" x = 1 ")

a = 2
e v a l (" a * a ")

e n v = { ' x ' : 4 2 }
e v a l (' x + 1 ' , e n v)

l o w e r c a s e (l i n e) :
l i n e . l o w e r ()

e n v = { ' a ' : 4 2 }
(' x = a + 1 ' , e n v)
e n v [' x ']

c o d e = ' d e f a d d _ % d (x) : r e t u r n x +
i r a n g e (1 , 5) :
(c o d e % (i , i))

exec & eval

is like

It is also possible to create functions or classes dynamically using

but it takes an expression and returns its value.

By default exec works in the current environment, so it updated the globals in the above example.
possible to specify an environment to exec.

, though it is usually not a good idea.

It is also

Python privides the whole interpreter as a built-in function. You can pass a string and ask it is execute that piece
of code at run time.

For example:

e v a l e x e c

e x e c

%d'

